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ABSTRACT

Triple Modular Redundancy (TMR) is a classical technique for improving
the reliability of digital systems. However, applying TMR to microcomputer
systems may not improve overall system reliability because voter circiits
may contribute as much to system unreliability as the microprocessors
themselves. We examine the issues that affect the effectiveness of TMR for
microcomputer systems, including voter unreliability, considerations for
transient recovery, and reliability of semiconductor memory systems. With
careful application TMR can improve the mission time of a small system by

a factor of three or more.
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1. INTRODUCTION

Triple modular redundancy (TMR) has been used in a number of
systems to increase reliability for highly critical applications
[1,2]. TR is applied to a nonredundant system by partitioning the
system into a number of modules, triplicating the modules, and placing
majority voters at the interfaces between modules. In a TMR system,
errors produced by any single faulty module are masked by a simple
majority vote. As shown in Fig. 1, the effects of single voter
failures can be overcome by triplicating the voters. There are no
critical single-point failures in the system of Fig. 1, that is, the
system will continue correct operation in spite of any single module
or voter failures.

For reasons of cost TMR in the past has only been applied to systems
for highly critical applications. However, the decreasing cost of
computer processor and memory hardware is increasing the feasibility of
TMR as a means of improving reliability in general-purpose systems. Of
course, for some systems it can be argued that improving processor and
memory reliability is of minor importance because most failures are
attributable to peripherals and input/output subsystems. However, in
addition to the fact that peripheral and input/output reliability have
been studied elsewhere [3], there is a strong argument to support the

development of reliable processors and memories. In many situations the

most practical way to increase system reliability is by providing standby
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spares that can be activated automatically upon failure of primary
units [1,4,5]. Obviously sparing schemes can increase reliability
only if the error detection and automatic switching mechanisms are
themselves very reliable [6]. Hence the development of inexpensive |
ultra-reliable processors can provide a new way of implementing ‘
"test and repair" functions for any system with spares (digital or |
otherwise).
The thought of applying TMR to microcomputer systems raises
some interesting questions. First of all, since a microprocessor is
just a single chip, it is not clear that reliability can really be
increased in a system that must use many voter chips constructed from
the same unreliable technology as the microprocessot itself. Secondly,
a microprocessor is a rather complex sequential machine with only
limited access to its internal state. When a transient failure causes
one of the replicated microprocessors to get out of synchronization
with the others, it is not clear that the system will ever be resynchronized
so that additional transients can be tolerated. Thirdly, the reliability

of semiconductor memory systems associated with microprocessors must be

considered.




2. MICROCOMPUTER SYSTEM MODEL

We will use the simple model of a microcomputer system shown
in Fig. 2. The system consists of simply a microprocessor and a
memory containing programs and data. Data, address, and control
outputs of the microprocessor are connected to the memory; data and
control outputs of the memory are connected to the microprocessor.
Connections to peripherals are ignored; for the TMR system it is
assumed that each peripheral interface has voters which monitor the I/0
commands given by all three triplicated processors.

A typical LSI microprocessor is the Intel 8080 [7]. The 8080
is an 8-bit processor in a 40-pin package. It has 16 address lines,
an 8-bit bidirectional data bus, and 9 control lines entering and
leaving the chip. The data bus must be externally split into two
one-way buses for voting to be applied, and hence there are a total
of 41 lines in an 8080 system that could be voted on. Since three
voter circuits (Fig. 3) can be placed on a single 1l4-pin package, it
is conceivable that a TMR 8080 system could have 3 8080 packages and
41 voter packages (triplicated voters) or 14 voter packages (non-
triplicated voters). Since a large percentage of integrated circuit

. failures are related to problems in packaging and I/0 pins rather than

circuit complexity, it is quite conceivable that the total voter un-
reliability in a TMR microcomputer system could approach or even exceed
the microprocessor unreliability. In such a system the use of TMR could
actually decrease the overall system reliability. After introducing some

|
reliability concepts, we will give a simple analysis that shows this. ,
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3. RELIABILITY CONCEPTS

The reliability of a component or system is a function of time
R(t), the probability that the component or system has not failed
at time t. For individual components of an electronic system it is
commonly assumed that failures after burn-in have a Poisson distri-
bution, so that the reliability of a component is given by the

formula R(t) = e-xt.

The parameter A depends on the component and
is called the failure rate. Typical SSI circuits have failure rates
of 30 P e 207" failures/hour, while failure rates of LSI circuits
such as 1024-bit memories have been reported in the range 10—5 to
10'-6 failures/hour [8,9].

Individual component failures in a system are assumed to be in-
dependent, so that the system reliability 1is the product of the
component reliabilities. For example, in a system composed of n
identical components with failure rate Ac, the system reliability is
Rsys(t) - (e—)‘ct)n = e—Asyst, where Asys = nAC.

Explicit identification of the time dependence of reliability is
often omitted in reliability expressions. Hence reliability is indicated
simply by R, and it is understood that the reliability at some time t
can be obtained by substituting the value of R(t) for every occurrence
of R in an expression.

For complex systems it is useful to have a single number that

characterizes the system reliability rather than a continuous function




of time. Sometimes the mean time to failure (MTF) is used to provide

this characterization. The MTF is defined as the integral from time
equals 0 to infinity of the system reliability. For components the

MIF is therefore simply the inverse of the failure rate; for any

system the MTF can be derived from the reliability expression. A
parameter that has been found to be more useful than MTF for evaluating
ultra-reliable systems is the mission time. The mission time for a
system with reliability Rsys(t) is defined to be the value of t such that

R (t) = R_, where R_ is some predetermined final reliability. The

sys f f

value used lepends on the application but a typical value is .95.
The missi icates the amount of time it takes for the reliability
of an initially perfect system to degrade to Rf [JO].

In comparing ultra-reliable systems with each other and with non-

redundant systems, the mission time improvement factor (MIIF) is often

used. The MTIF is the ratio of the mission times of a redundant system

and the corresponding nonredundant system [10].

The reliability of a TMR system can be calculated by partitioning
the system into a number of cells such that errors on the outputs of a
cell are corrected by voters at the inputs of subsequent cells [11], as
indicated for the simple system of Fig. 1. Then the individual cell
reliabilities are calculated, where a cell is considered to be operating
correctly if at least two out of three of each of its triplicated output
lines is correct. The system operates correctly if and only if each cell

operates correctly, and so the system reliability is the product of the

cell reliabilities.




The simplest type of cell has one triplicated module type and
voters at the inputs of the modules; two of these cells comprise the
system in Fig. 1. If Rv is the voter reliability and Rm is the module
reliability, then the cell reliability is Rcell = (RmRv)3 + 3(RmRV)2(1—RmRv).
since two out of three of the cell outputs are correct if and only if two
out of three of the voter-module pairs are working correctly. If there

n
are n module inputs then n voters are used for each module and Rv replaces

Rv in the expression above.
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4. TMR MICROCOMPUTER SYSTEM UNRELIABILITY

As we indicated in section 2, a typical microprocessor might

have 40 or more lines to be voted upon when TMR is applied. Ir a

small system consisting of a microprocessor and a small number of
memory circuits, the voter unreliability could be greater than the
microprocessor and memory unreliability. Suppose the reliability of
the microprocessor/memory module is Rm and the reliability of a single
voter 1is Rv. If n voters are required then the total voter reliability
is Rs, and this can be related to the module reliabiltty by a factor

k

k such that R: = Rm. The factor k could be in the range .1 (very

reliable voters) to 2 or more (voter reliability per pin comparable to

microprocessor reliability). For example, suppose a microcomputer system

uses one microprocessor and four memory chips, each with failure rate
Am = 10—6. If the voter failure rate is Av = 10_7, then 40 voters
produce a value of k of .8.

A simple reliability analysis of the TMR microcomputer indicates
that the system functions properly if at least two out of three of the
replicated voter/module subs;stems function properly. Hence the TMR
system reliability is

Ryrs ® (RmR3)3 + (Rma‘;)zu-nmn‘;)

2 (Ri+k)3 * (R 1+l<)2(l R k)

The reliability of the nonredundant system is simply Rm' The mission
time improvement factor (MTIF) for the TMR system can be calculated as

a function of k, as shown in Fig. 3afor a final reliability Rf = .95,
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For the perfect voter case (k=0), the theoretical maximum MTIF of
2.84 is obtained, but for imperfect voters (k>0) the MTIF can be
much less. For example, if the module and total voter unreliabilities
are equal (k=1), the MTIF is only 1.42, and for k=2 the redundant system
actually has a lower mission time than the nonredundant system.

The preceding analysis shows that voter reliability can be a
critical factor in TMR microcomputer systems. One way to reduce the
effects of voter unreliability is to reduce the number of voters. For
example, a triplicated microprocessor/memory system could be designed
with no voters at all. The three copies would be initialized to the
same starting state and would run in synchronization from a common (fault-
tolerant) clock. Since the peripherals are assumed to have their own
voters, each peripheral would monitor the I/0 commands of all three copies
and would perform the operations dictated by the majority. However,
consider the behavior of this system in the presence of transient failures.
A transient failure can cause a microprocessor to get out of synchronization
with the others, and a second transient can cause system failure unless
the microprocessor is resynchronized. The problem with the no-voter scheme
is that there is no coupling among the replicated microprocessor/memory
systems, and hence there is no mechanism for resynchronization after
transients. In the next section we present a system organization that has

the minimum number of voters required for resynchronization after transients.




5. SYSTEM STRUCTURE FOR RESYNCHRONIZATION

A transient failure can have an arbitrary effect on the state of
a microprocessor, and after the transient disappears the affected
processor may continue to have the incorrect state. If a second
transient failure affects a different processor before the correct
state of the first is restored, then two processors will produce
incorrect outputs and the TMR system will fail. This certainly runs
contrary to the desire to make the system tolerate short transients
by the use of TMR. For multiple transients to be tolerated, the system
must be structured so that each replicated processor frequently receives
b; a synchronizing sequence during normal operation [12].

Suppose that voters are placed at the master reset input and the
data inputs of each microprocessor, as shown in Fig. 4. The address,
data out, and control lines of each microprocessor go directly to the
corresponding memory module without any voting. This configuration
has the minimum number of voters needed to provide re-synchronization
after transient failures. For example, suppose a transient failure
causes several registers of one microprocessor and several words in the
b corresponding memory module to contain incorrect data. Each of the in-
correct registers is resynchronized with correct data when it is loaded

from memory, since the voters insure correct memory output regardless of

any possible errors in the state of one of the memories. Once the micro-
processor 1is resynchronized, the memory is resynchronized by loading the

incorrect memory words from the microprocessor.
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0f course, it is possible that a transient failure can affect not
only the register state but also the program state of a microprocessor.
In general the microprocessor can attain any erroneous state and before
being resynchronized it can create arbitrary errors in the corresponding
memory module. It is this possibility that necessitates a voter on the
master reset line of the microprocessors. Associated with each micro-
processor is some interface circuitry that can be instructed by the soft-
ware to initiate a hardware reset. Periodically the software would cause
such a reset to occur, and since the reset line is voted on, a completely
unsynchronized microprocessor must still obey the reset command. The

reset command causes the microprocessor to begin executing a routine at

some fixed location. The routine in this case must be a synchronizing
routine that first initializes all of the processor registers from memory,
and then corrects any possible errors in a single memory module by
sequentially reading and then rewriting every word in the memory.

There are certain hardware/software tradeoffs involving synchronization.
For example, if voters are placed on the address, data and control lines
between the microprocessor output and memory input, then a single erroneous
processor cannot cause bad data to be written into the corresponding
memory module. Thus the software resynchronization process need not

— assume the worst case, that arbitrary errors have been created in the

memory. On the other hand, the voting hardware is more expensive and
unreliable.

An alternative to the system structure of Fig. 4 places voters on

the data inputs lines to the memory rather than on the data output. This

e e T e b T ) s S N— -~




structure still allows synchronization, since an error in a piocessor
register wiil be masked when it is written into memory, and memory

can still be re-initialized by reading and then rewriting every memory
word. This structure might even seem better than Fig. 4 because it
prevents a single faulty processor from writing incorrect data into
memory. However, the structure of Fig. 4, which places voters on the

memory outputs rather than inputs yields significantly higher reliability

when o semiconductor memory syvstem is used.
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6. SEMICONDUCTOR MEMORY RELIABILITY

The semiconductor memory module of a microcomputer system can be
modeled as shown in Fig. 5. There is some shared address decoding
and driving circuitry, an array of memory chips, and perhaps some
shared output circuitry. The memory array consists of ns 1-bit by w-word
memory chips arranged in an nxs matrix to form the n-bit by ws-word
array. If the memory chip reliability is RC and the reliability of the
common circuitry is Rd’ then module reliability is R:S'R and it would

d

appear that the reliability of a TMR memory system is
R = ("R )° ¢ 3R 3° a-E"%R) . (1)
sys c d c d c d
The above analysis neglects the organization of the memory array.
In a system such as Fig. 4 where there is a voter for each bit of the
memory output, the system fails only if there is a simultaneous error
in a single bit position of two of the triplicated memory modules. Con-
sideration of the memory array structure hence leads to the more accurate

reliability formula,
X

8 2 2ns
+ 3Rd(1-Rd)Rc (2)

Ryys ° R3(3R§ - 2R2)“
This expression reflects the fact that at each position in the array of
Fig. 5, two out of three of the replicated memory chips must be working,
independent of other positions in the array.

The reliability expression above always produces a reliability value
greater than or equal to (1). The improvement obtained by using (2)
decreases as the reliability of the memory array (RC) relative to the

common circuitry (Rd) increases. For example, if Rc-l the formulas are
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identical. But for typical semiconductor memory systems, the common
circuitry comprises only about 10-15% of the total, and so the
reliability value obtained by considering the structure of the memory
array (2) is significantly higher than that obtained by simple analysis
(1). A typical example is shown in Fig. 6.

The TMR memory reliability indicated by (2) is more accurate than
(1), but it is still not complete. A complete memory system analysis
must be somewhat more complex, taking into account voter reliability, the
placement of voters for the memory system inputs, and the possibility of
having different chip types within the memory array. For example, (2)

may be modified to take into account voter reliability, yielding the

expression,
3r. 3,03 2 s 2 284N
= R - o
Rsys Rd[Rv( L+ 3R_(1-R))" + 3R (1-R )R ]
2 s.2n
+ 3Rd(1-Rd)(Rch) (3

The reliability improvement of Eqn. (2) and (3) over Eqn. (1) is only
obtained when there are voters on the memory outputs. If voting is applied
after data has been routed through a processor, then (2) and (3) do not
apply. In such a system, a single bit error in the memory output can
produce multiple bit errors in the resulting processor outputs, invalidating
the assumption used in deriving (2) and (3).

The reliability of a TMR memory system should be compared with a

memory system that attains single fault-tolerance by using a single-error-
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correcting code. Both systems are guaranteed to correct any single
failure in the memory array, but analysis has shown that the TMR

system is more reliable because it corrects a larger number of multiple
failures. For an 8-bit memory system, coding requires 4 redundant

memory bits per word while TMR requires 16. On the other hand, the

coded system requires a separate copy of the common input circuitry

(Fig. 5) for each bit t tolerate single failures in the common circuitry.
In addition, the output decoder for the coded system is much more complex
than a few TMR voters, and it must be triplicated if the memory system

is being interfaced to a TMR processor, or in any case duplicated if
decoder failures are to at least be detected. Hence for small fault-

tolerant memory system that are to be interfaced to a TMR processor,

TMR appears to be a much better choice than coding [13].
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7. TMR MICROCOMPUTER SYSTEM RELIABILITY

The reliability of the TMR microcomputer system of Fig. 4 can
be analyzed by using Eqn. (3) from the previous section, by including
the microprocessor reliability as part of the common circuitry term
Rd' The reliability of a system with no voters or with voters between
the CPU output and memory input can be derived using Eqn. (1). Fig. 7
shows the reliability of these three possible TMR implementations of a
nonredundant microcomputer with 1K bytes of memory using cypical failure
rates. All three TMR systems have higher reliability than the non-
redundant system, and improve the mission time by a factor of about 3.
Among the TMR systems, the implementation with voters at the memory output
(TMR CPU-memory-voter) is most reliable, for the reasons discussed in the
previous section. The system with voters between CPU output and memory
input (TMR CPU~voter-memory) is less reliable than a system with no voters
because of voter unreliability. However, the CPU-voter-memory system is
actually more reliable if transients are considered because of its ability
for resynchronization.

The reliability curves for similar implementations of a system with
more memory (8K bytes) are shown in Fig. 8. It can be seen that in this
case there is little difference between the no-voter and CPU-voter-memory
implementations because the major contribution to system unreliability is
from the memory chips. However, a substantial improvement over these

implementations is obtained in the CPU-memory-voter implementation, because

of the greater number of memory failures tolerated.
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8. CONCLUSION

Triple modular redundancy, if carefully applied, is an effective
way of increasing the reliability of microcomputer systems. Application
of TMR to microcomputer systems must take into account the fact that
voters may be as unreliable as microprocessors themselves, that micro-
processors are complex sequential machines that require resynchronization
after transients, and that special considerations apply to reliability of
semiconductor memory systems used with microprocessors. We have shown

two examples of small microcomputer systems in which TMR improves the

missicn time by a factor of three or more.
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